Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38690584

RESUMEN

Low discovery rates for new antibiotics, commercial disincentives to invest, and inappropriate use of existing drugs have created a perfect storm of antimicrobial resistance (AMR). This "silent pandemic" of AMR looms as an immense, global threat to human health. In tandem, many potential novel drug candidates are not progressed due to elevated hydrophobicity, which may result in poor intracellular internalization and undesirable serum protein binding. With a reducing arsenal of effective antibiotics, enabling technology platforms that improve the outcome of treatments, such as repurposing existing bioactive agents, is a prospective option. Nanocarrier (NC) mediated drug delivery is one avenue for amplifying the therapeutic outcome. Here, the performance of several antibiotic classes encapsulated within the lipid-based cubosomes is examined. The findings demonstrate that encapsulation affords significant improvements in drug concentration:inhibition outcomes and assists in other therapeutic challenges associated with internalization, enzyme degradation, and protein binding. We emphasize that a currently sidelined compound, novobiocin, became active and revealed a significant increase in inhibition against the pathogenic Gram-negative strain, Pseudomonas aeruginosa. Encapsulation affords co-delivery of multiple bioactives as a strategy for mitigating failure of monotherapies and tackling resistance. The rationale in optimized drug selection and nanocarrier choice is examined by transport modeling which agrees with experimental inhibition results. The results demonstrate that lipid nanocarrier encapsulation may alleviate a range of challenges faced by antibiotic therapies and increase the range of antibiotics available to treat bacterial infections.

2.
J Colloid Interface Sci ; 663: 82-93, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38394820

RESUMEN

HYPOTHESIS: Lipid nanoparticles containing a cationic lipid are increasingly used in drug and gene delivery as they can display improved cellular uptake, enhanced loading for anionic cargo such as siRNA and mRNA or exhibit additional functionality such as cytotoxicity against cancer cells. This research study tests the hypothesis that the molecular structure of the cationic lipid influences the structure of the lipid nanoparticle, the cellular uptake, and the resultant cytotoxicity. EXPERIMENTS: Three potentially cytotoxic cationic lipids, with systematic variations to the hydrophobic moiety, were designed and synthesised. All the three cationic lipids synthesised contain pharmacophores such as the bicyclic coumarin group (CCA12), the tricyclic etodolac moiety (ETD12), or the large pentacyclic triterpenoid "ursolic" group (U12) conjugated to a quaternary ammonium cationic lipid containing twin C12 chains. The cationic lipids were doped into monoolein cubosomes at a range of concentrations from 0.1 mol% to 5 mol% and the effect of the lipid molecular architecture on the cubosome phase behaviour was assessed using a combination of Small Angle X-Ray Scattering (SAXS), Dynamic Light Scattering (DLS), zeta-potential and cryo-Transmission Electron Microscopy (Cryo-TEM). The resulting cytotoxicity of these particles against a range of cancerous and non-cancerous cell-lines was assessed, along with their cellular uptake. FINDINGS: The molecular architecture of the cationic lipid was linked to the internal nanostructure of the resulting cationic cubosomes with a transition to more curved cubic and hexagonal phases generally observed. Cubosomes formed from the cationic lipid CCA12 were found to have improved cellular uptake and significantly higher cytotoxicity than the cationic lipids ETD12 and U12 against the gastric cancer cell-line (AGS) at lipid concentrations ≥ 75 µg/mL. CCA12 cationic cubosomes also displayed reasonable cytotoxicity against the prostate cancer PC-3 cell-line at lipid concentrations ≥ 100 µg/mL. In contrast, 2.5 mol% ETD12 and 2.5 mol% U12 cubosomes were generally non-toxic against both cancerous and non-cancerous cell lines over the entire concentration range tested. The molecular architecture of the cationic lipid was found to influence the cubosome phase behaviour, the cellular uptake and the toxicity although further studies are necessary to determine the exact relationship between structure and cellular uptake across a range of cell lines.


Asunto(s)
Nanopartículas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Nanopartículas/química , Microscopía Electrónica de Transmisión , Dispersión Dinámica de Luz , Estructura Molecular
3.
ACS Appl Mater Interfaces ; 16(10): 12161-12174, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416873

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive brain cancer with high malignancy and resistance to conventional treatments, resulting in a bleak prognosis. Nanoparticles offer a way to cross the blood-brain barrier (BBB) and deliver precise therapies to tumor sites with reduced side effects. In this study, we developed angiopep-2 (Ang2)-functionalized lipid cubosomes loaded with cisplatin (CDDP) and temozolomide (TMZ) for crossing the BBB and providing targeted glioblastoma therapy. Developed lipid cubosomes showed a particle size of around 300 nm and possessed an internal ordered inverse primitive cubic phase, a high conjugation efficiency of Ang2 to the particle surface, and an encapsulation efficiency of more than 70% of CDDP and TMZ. In vitro models, including BBB hCMEC/D3 cell tight monolayer, 3D BBB cell spheroid, and microfluidic BBB/GBM-on-a-chip models with cocultured BBB and glioblastoma cells, were employed to study the efficiency of the developed cubosomes to cross the BBB and showed that Ang2-functionalized cubosomes can penetrate the BBB more effectively. Furthermore, Ang2-functionalized cubosomes showed significantly higher uptake by U87 glioblastoma cells, with a 3-fold increase observed in the BBB/GBM-on-a-chip model as compared to that of the bare cubosomes. Additionally, the in vivo biodistribution showed that Ang2 modification could significantly enhance the brain accumulation of cubosomes in comparison to that of non-functionalized particles. Moreover, CDDP-loaded Ang2-functionalized cubosomes presented an enhanced toxic effect on U87 spheroids. These findings suggest that the developed Ang2-cubosomes are prospective for improved BBB crossing and enhanced delivery of therapeutics to glioblastoma and are worth pursuing further as a potential application of nanomedicine for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Péptidos , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Barrera Hematoencefálica/patología , Distribución Tisular , Estudios Prospectivos , Línea Celular Tumoral , Temozolomida , Neoplasias Encefálicas/patología , Nanopartículas/uso terapéutico , Lípidos/uso terapéutico
4.
Small ; : e2309200, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295089

RESUMEN

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.

5.
J Colloid Interface Sci ; 657: 841-852, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38091907

RESUMEN

Lipid-based lyotropic liquid crystalline nanoparticles (LCNPs) face stability challenges in biological fluids during clinical translation. Ionic Liquids (ILs) have emerged as effective solvent additives for tuning the structure of LCNP's and enhancing their stability. We investigated the effect of a library of 21 choline-based biocompatible ILs with 9 amino acid anions as well as 10 other organic/inorganic anions during the preparation of phytantriol (PHY)-based LCNPs, followed by incubation in human serum and serum proteins. Small angle X-ray scattering (SAXS) results show that the phase behaviour of the LCNPs depends on the IL concentration and anion structure. Incubation with human serum led to a phase transition from the inverse bicontinuous cubic (Q2) to the inverse hexagonal (H2) mesophase, influenced by the specific IL present. Liquid chromatography-mass spectrometry (LC-MS) and proteomics analysis of selected samples, including PHY control and those with choline glutamate, choline hexanoate, and choline geranate, identified abundant proteins in the protein corona, including albumin, apolipoproteins, and serotransferrin. The composition of the protein corona varied among samples, shedding light on the intricate interplay between ILs, internal structure and surface chemistry of LCNPs, and biological fluids.


Asunto(s)
Líquidos Iónicos , Cristales Líquidos , Nanopartículas , Corona de Proteínas , Humanos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Nanopartículas/química , Aniones , Cristales Líquidos/química
6.
J Colloid Interface Sci ; 656: 409-423, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38000253

RESUMEN

HYPOTHESIS: Lyotropic liquid crystalline nanoparticles (LLCNPs) with complex internal nanostructures hold promise for drug delivery. Cubosomes, in particular, have garnered interest for their ability to fuse with cell membranes, potentially bypassing endosomal escape challenges and improving cellular uptake. The mesostructure of nanoparticles plays a crucial role in cellular interactions and uptake. Therefore, we hypothesise that the specific internal mesophase of the LLCNPs will affect their cellular interactions and uptake efficiencies, with cubosomes exhibiting superior cellular uptake compared to other LLCNPs. EXPERIMENTS: LLCNPs with various mesophases, including liposomes, cubosomes, hexosomes, and micellar cubosomes, were formulated and characterised. Their physicochemical properties and cytotoxicity were assessed. Chinese Hamster Ovarian (CHO) cells were treated with fluorescently labelled LLCNPs, and their interactions were monitored and quantified through confocal microscopy and flow cytometry. FINDINGS: The non-lamellar LLCNPs showed significantly higher cellular interactions compared to liposomes, with cubosomes exhibiting the highest level. However, there was no significant difference in relative cell uptake between cubosomes, hexosomes, and micellar cubosomes. Cell uptake experiments at 4 °C revealed the presence of an energy-independent uptake mechanism. This study provides the first comparative analysis of cellular interactions and uptake efficiencies among LLCNPs with varying mesophases, while maintaining similar size, composition, and surface charge.


Asunto(s)
Cristales Líquidos , Nanopartículas , Nanoestructuras , Cricetinae , Animales , Liposomas , Micelas , Nanopartículas/química , Cristales Líquidos/química , Cricetulus
7.
Int J Biol Macromol ; 253(Pt 7): 127456, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844813

RESUMEN

Green fluorescent protein (GFP) and its variants are widely used in medical and biological research, especially acting as indicators of protein structural integrity, protein-protein interactions and as biosensors. This study employs superfolder GFP (sfGFP) to investigate the impact of varying alkyl chain length of 1-Cn-3-methylimidazolium chloride ionic liquid (IL) series ([Cnmim]Cl, n = 2, 4, 6, 8, 10, 12) on the protein fluorescence, structure, hydration, aggregation dynamics and crystallization behaviour. The results revealed a concentration-dependent decrease in the sfGFP chromophore fluorescence, particularly in long alkyl chain ILs ([C10mim]Cl and [C12mim]Cl). Tryptophan (Trp) fluorescence showed the quenching rate increased with longer alkyl chains indicating a nonpolar interaction between Trp57 and the alkyl chain. Secondary structural changes were observed at the high IL concentration of 1.5 M in [C10mim]Cl and [C12mim]Cl. Small-angle X-ray scattering (SAXS) indicated relatively stable protein sizes, but with IL aggregates present in [C10mim]Cl and [C12mim]Cl solutions. Dynamic light scattering (DLS) data showed increased protein size and aggregation with longer alkyl chain ILs. Notably, ILs and salts, excluding [C2mim]Cl, promoted sfGFP crystallization. This study emphasizes the influence of the cation alkyl chain length and concentration on protein stability and aggregation, providing insights into utilizing IL solvents for protein stabilization and crystallization purposes.


Asunto(s)
Líquidos Iónicos , Proteínas Fluorescentes Verdes/genética , Líquidos Iónicos/química , Cristalización , Dispersión del Ángulo Pequeño , Difracción de Rayos X
8.
J Am Chem Soc ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870621

RESUMEN

mRNA lipid nanoparticle (LNP) technology presents enormous opportunities to prevent and treat various diseases. Here, we developed a novel series of LNPs containing ionizable amino-lipids showing a remarkable array of tunable and pH-sensitive lyotropic liquid crystalline mesophases including the inverse bicontinuous cubic and hexagonal phases characterized by high-throughput synchrotron radiation X-ray scattering. Furthermore, with an interest in developing mRNA therapeutics for lung macrophage targeting, we discovered that there is a strong correlation between the mesophase transition of the LNPs during acidification and the macrophage association/transfection efficiency of mRNAs. The slight molecular structural differences between the SM-102 and ALC-0315 ionizable lipids are linked to the LNP's ability to transform their internal structures from an amorphous state to the inverse micellar, hexagonal, and finally cubic structures during endosomal maturation. SM-102 LNPs showed exceptionally improved transfection efficiency due to their ability to form a cubic structure at a lower pH than the ALC-0315 analogues, which remained within the hexagonal structure, previously attributed to promoting endosomal escape of the ionizable LNPs. Overall, the new knowledge draws our attention to the important role of mesophase transition in endosomal escape, and the novel LNP libraries reported herein have broad prospects for advancing mRNA therapeutics.

9.
Angew Chem Int Ed Engl ; 62(35): e202304977, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37391876

RESUMEN

Ionisable amino-lipid is a key component in lipid nanoparticles (LNPs), which plays a crucial role in the encapsulation of RNA molecules, allowing efficient cellular uptake and then releasing RNA from acidic endosomes. Herein, we present direct evidence for the remarkable structural transitions, with decreasing membrane curvature, including from inverse micellar, to inverse hexagonal, to two distinct inverse bicontinuous cubic, and finally to a lamellar phase for the two mainstream COVID-19 vaccine ionisable ALC-0315 and SM-102 lipids, occurring upon gradual acidification as encountered in endosomes. The millisecond kinetic growth of the inverse cubic and hexagonal structures and the evolution of the ordered structural formation upon ionisable lipid-RNA/DNA complexation are quantitatively revealed by in situ synchrotron radiation time-resolved small angle X-ray scattering coupled with rapid flow mixing. We found that the final self-assembled structural identity, and the formation kinetics, were controlled by the ionisable lipid molecular structure, acidic bulk environment, lipid compositions, and nucleic acid molecular structure/size. The implicated link between the inverse membrane curvature of LNP and LNP endosomal escape helps future optimisation of ionisable lipids and LNP engineering for RNA and gene delivery.


Asunto(s)
COVID-19 , Nanopartículas , Ácidos Nucleicos , Humanos , Lípidos/química , Vacunas contra la COVID-19 , Ácidos Nucleicos/química , COVID-19/prevención & control , ARN , Nanopartículas/química , Concentración de Iones de Hidrógeno , ARN Interferente Pequeño
10.
J Colloid Interface Sci ; 649: 966-976, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37392686

RESUMEN

Hypothesis The study aimed to use molecular hybridization of a cationic lipid with a known pharmacophore to produce a bifunctional lipid having a cationic charge to enhance fusion with the cancer cell surface and biological activity via the pharmacophoric head group. Experiments The novel cationic lipid DMP12 [N-(2-(3-(3,4-dimethoxyphenyl) propanamido) ethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide] was synthesised by conjugating 3-(3,4-dimethoxyphenyl) propanoic acid (or 3,4-dimethoxyhydrocinnamic acid) to twin 12 carbon chains bearing a quaternary ammonium group [N-(2-aminoethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide]. The physicochemical and biological properties of DMP12 were investigated. Cubosome particles consisting of monoolein (MO) doped with DMP12 and paclitaxel were characterized using Small-angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Combination therapy using these cubosomes was assessed in vitro against the gastric (AGS) and prostate (DU-145 and PC-3) cancer cell lines using cytotoxicity assay. Findings Monoolein (MO) cubosomes doped with DMP12 were observed to be toxic against the AGS and DU-145 cell-lines at higher cubosome concentrations (≥100 µg/ml) but had limited activity against the PC-3 cell-line. However, combination therapy consisting of 5 mol% DMP12 and 0.5 mol% paclitaxel (PTX) significantly increased the cytotoxicity against the PC-3 cell-line which was resistant to either DMP12 or PTX individually. The results demonstrate that DMP12 has a prospective role as a bioactive excipient in cancer therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Próstata , Humanos , Masculino , Paclitaxel/química , Dispersión del Ángulo Pequeño , Yoduros , Difracción de Rayos X , Línea Celular
11.
J Colloid Interface Sci ; 650(Pt B): 1393-1405, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37480654

RESUMEN

Ions are important to modulate protein properties, including solubility and stability, through specific ion effects. Ionic liquids (ILs) are designer salts with versatile ion combinations with great potential to control protein properties. Although protein-ion binding of common metals is well-known, the IL effect on proteins is not well understood. Here, we employ the model protein lysozyme in dilute and concentrated IL solutions to determine the specific ion binding effect on protein phase behaviour, activity, size and conformational change, aggregation and intermolecular interactions. A combination of spectroscopic techniques, activity assays, small-angle X-ray scattering, and crystallography highlights that ILs, particularly their anions, bind to specific sites in the protein hydration layer via polar contacts on charged, polar and aromatic residues. The specific ion binding can induce more flexible loop regions in lysozyme, while the ion binding in the bulk phase can be more dynamic in solution. Overall, the protein behaviour in ILs depends on the net effect of nonspecific interactions and specific ion binding. Compared to formate, the nitrate anion induced high protein solubility, low activity, elongated shape and aggregation, which is largely owing to its higher propensity for ion binding. These findings provide new insights into protein-IL binding interactions and using ILs to modulate protein properties.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Muramidasa/química , Proteínas , Iones , Aniones/química
12.
ACS Appl Mater Interfaces ; 15(23): 27670-27686, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37262346

RESUMEN

An improved vaccine is urgently needed to replace the now more than 100-year-old Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis (TB) disease, which represents a significant burden on global public health. Mycolic acid, or cord factor trehalose 6,6' dimycolate (TDM), a lipid component abundant in the cell wall of the pathogen Mycobacterium tuberculosis (MTB), has been shown to have strong immunostimulatory activity but remains underexplored due to its high toxicity and poor solubility. Herein, we employed a novel strategy to encapsulate TDM within a cubosome lipid nanocarrier as a potential subunit nanovaccine candidate against TB. This strategy not only increased the solubility and reduced the toxicity of TDM but also elicited a protective immune response to control MTB growth in macrophages. Both pre-treatment and concurrent treatment of the TDM encapsulated in lipid monoolein (MO) cubosomes (MO-TDM) (1 mol %) induced a strong proinflammatory cytokine response in MTB-infected macrophages, due to epigenetic changes at the promoters of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in comparison to the untreated control. Furthermore, treatment with MO-TDM (1 mol %) cubosomes significantly improved antigen processing and presentation capabilities of MTB-infected macrophages to CD4 T cells. The ability of MO-TDM (1 mol %) cubosomes to induce a robust innate and adaptive response in vitro was further supported by a mathematical modeling study predicting the vaccine efficacy in vivo. Overall, these results indicate a strong immunostimulatory effect of TDM when delivered through the lipid nanocarrier, suggesting its potential as a novel TB vaccine.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Anciano de 80 o más Años , Factores Cordón/farmacología , Estudios Prospectivos , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control , Citocinas
13.
J Colloid Interface Sci ; 648: 376-388, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37302221

RESUMEN

Globular proteins are well-folded model proteins, where ions can substantially influence their structure and aggregation. Ionic liquids (ILs) are salts in the liquid state with versatile ion combinations. Understanding the IL effect on protein behavior remains a major challenge. Here, we employed small angle X-ray scattering to investigate the effect of aqueous ILs on the structure and aggregation of globular proteins, namely, hen egg white lysozyme (Lys), human lysozyme (HLys), myoglobin (Mb), ß-lactoglobulin (ßLg), trypsin (Tryp) and superfolder green fluorescent protein (sfGFP). The ILs contain ammonium-based cations paired with the mesylate, acetate or nitrate anion. Results showed that only Lys was monomeric, whereas the other proteins formed small or large aggregates in buffer. Solutions with over 17 mol% IL resulted in significant changes in the protein structure and aggregation. The Lys structure was expanded at 1 mol% but compact at 17 mol% with structural changes in loop regions. HLys formed small aggregates, with the IL effect similar to Lys. Mb and ßLg mostly had distinct monomer and dimer distributions depending on IL type and IL concentration. Complex aggregation was noted for Tryp and sfGFP. While the anion had the largest ion effect, changing the cation also induced the structural expansion and protein aggregation.


Asunto(s)
Líquidos Iónicos , Muramidasa , Humanos , Muramidasa/química , Líquidos Iónicos/química , Rayos X , Aniones , Cationes , Proteínas Fluorescentes Verdes , Dispersión del Ángulo Pequeño
14.
ACS Appl Mater Interfaces ; 15(18): 21819-21829, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37018059

RESUMEN

Mycobacterium tuberculosis (MTB) causes the infectious disease tuberculosis (TB), responsible for more deaths than any other single infectious disease in history. Intracellular MTB are slow growing and difficult to target with traditional antitubercular drugs, leading to the emergence of multidrug resistance in TB infection, which is a major global public health issue. Recent advances in innovative lipid nanotechnologies for drug delivery have demonstrated promising outcomes for chronic infectious diseases but have not yet been tested as potential delivery systems for intracellular infections such as TB. The current study evaluates the potential of monoolein (MO)-based cationic cubosomes for the encapsulation and delivery of the first line antitubercular drug rifampicin (RIF) against an MTB-H37Ra in vitro culture model. In particular, we show that the use of cationic cubosomes as delivery vehicles reduced the minimum inhibitory concentration (MIC) of RIF by 2-fold against actively replicating MTB-H37Ra (compared to that of the free drug) and also shortened the lifecycle duration of axenic MTB-H37Ra from 5 to 3 days. The cubosome-mediated delivery was also found to be effective against intracellular MTB-H37Ra within THP-1 human macrophages, with a 2.8 log reduction in viability of the bacilli after 6 days incubation at the MIC. The killing time was also reduced from 8 to 6 days without distressing the host macrophages. Mechanistic studies on the uptake of RIF-loaded cationic cubosomes using total internal reflection fluorescence microscopy (TIRFM) demonstrated the capacity of these lipid particles to effectively target intracellular bacteria. Overall, these results demonstrate that cationic cubosomes are a potent delivery system for the antitubercular drug RIF for therapeutic management of TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Tuberculosis/tratamiento farmacológico , Rifampin/farmacología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Lípidos/farmacología
15.
J Chem Phys ; 158(1): 014902, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36610972

RESUMEN

Lyotropic liquid crystal phases (LCPs) are widely studied for diverse applications, including protein crystallization and drug delivery. The structure and properties of LCPs vary widely depending on the composition, concentration, temperature, pH, and pressure. High-throughput structural characterization approaches, such as small-angle x-ray scattering (SAXS), are important to cover meaningfully large compositional spaces. However, high-throughput LCP phase analysis for SAXS data is currently lacking, particularly for patterns of multiphase mixtures. In this paper, we develop semi-automated software for high throughput LCP phase identification from SAXS data. We validate the accuracy and time-savings of this software on a total of 668 SAXS patterns for the LCPs of the amphiphile hexadecyltrimethylammonium bromide (CTAB) in 53 acidic or basic ionic liquid derived solvents, within a temperature range of 25-75 °C. The solvents were derived from stoichiometric ethylammonium nitrate (EAN) or ethanolammonium nitrate (EtAN) by adding water to vary the ionicity, and adding precursor ions of ethylamine, ethanolamine, and nitric acid to vary the pH. The thermal stability ranges and lattice parameters for CTAB-based LCPs obtained from the semi-automated analysis showed equivalent accuracy to manual analysis, the results of which were previously published. A time comparison of 40 CTAB systems demonstrated that the automated phase identification procedure was more than 20 times faster than manual analysis. Moreover, the high throughput identification procedure was also applied to 300 unpublished scattering patterns of sodium dodecyl-sulfate in the same EAN and EtAN based solvents in this study, to construct phase diagrams that exhibit phase transitions from micellar, to hexagonal, cubic, and lamellar LCPs. The accuracy and significantly low analysis time of the high throughput identification procedure validates a new, rapid, unrestricted analytical method for the determination of LCPs.


Asunto(s)
Cristales Líquidos , Agua , Dispersión del Ángulo Pequeño , Agua/química , Difracción de Rayos X , Cristales Líquidos/química , Cetrimonio , Solventes , Automatización
16.
J Colloid Interface Sci ; 634: 279-289, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542965

RESUMEN

HYPOTHESIS: Non-lamellar lyotropic liquid crystal nanoparticles (LLCNPs) are gaining significant interest in the fields of drug delivery and nanomedicine. Traditional, top-down formulation strategies for LLCNPs are typically low-throughput, can lack controllability and reproducibility in the particle size distribution, and may be unsuitable for loading more fragile therapeutics. The development of a controllable, reproducible, scalable, and high-throughput strategy is urgently needed. EXPERIMENTS: Monoolein (MO)-based LLCNPs with various stabilizers (F127, F108, and Tween 80) and phytantriol (PT)-F127 cubosomes were produced at various flow conditions via a bottom-up method using a microfluidic platform. FINDINGS: This simple enabling strategy was used to formulate LLCNPs with lower polydispersity compared to the traditional top-down homogenization method. Significantly, particle size could be quantitatively controlled by varying the overall flow-rate; a scaling law was identified between nanoparticle mean size and the total flow rate (Q) of meansize∼Q-0.15 for MO cubosomes and meansize∼Q-0.19 for PT cubosomes (at a fixed flow rate ratio). Effective size control was achieved for a range of cubosome formulations involving different lipids and stabilizers. The formulation of stable, drug-loaded cubosomes with high encapsulation efficiency using this method was exemplified using calcein as a model drug. This work will further promote the utilisation of LLCNPs in nanomedicine and facilitate their clinical translation.


Asunto(s)
Cristales Líquidos , Nanopartículas , Cristales Líquidos/química , Microfluídica , Reproducibilidad de los Resultados , Polietilenos/química , Nanopartículas/química , Tamaño de la Partícula
17.
J Mater Chem B ; 11(2): 403-414, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36511883

RESUMEN

Responsive nanoparticle delivery systems hold great potential for next-generation chemotherapeutic treatment with reduced off-target side effects. In this work, we formulated responsive lipid-based cubosomes loaded with paclitaxel (PTX) as a model drug and stabilised by novel amphiphilic block copolymers (ABCs) containing the pH-responsive poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and/or the hydrogen peroxide (H2O2)-responsive poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) blocks. The results showed that these cubosomes with a particle size of around 250 nm exhibited excellent PTX encapsulation efficiency of up to 60% and had the ability to control the release rate of the drug in response to pH and H2O2 changes. Specifically, compared to the physiological pH of 7.4, PTX was released faster from the cubosome carriers when exposed to pH 5.5 and/or 50 mM H2O2 conditions, which are pathological conditions found in a tumour microenvironment. In vitro cytotoxicity and cell uptake studies further investigated the cellular interactions of these cubosomes. It was found that cubosomes containing PTX had more toxic effects than the control free PTX sample. Compared to cubosomes stabilised by the non-responsive block copolymer Pluronic® F127, the ABC-stabilised cubosomes also had higher cell internalisation efficiency demonstrated by the cytoplasmic fluorescence intensities using confocal microscopy. These results demonstrated that ABCs containing responsive moieties can stabilise lipid cubosomes and enhance controlled release of poorly soluble chemotherapeutics and cellular uptake.


Asunto(s)
Peróxido de Hidrógeno , Paclitaxel , Paclitaxel/farmacología , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Lípidos
18.
J Sci Food Agric ; 103(1): 135-142, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35833377

RESUMEN

BACKGROUND: Oleogels represent one of the most important carriers for the delivery of lipophilic nutraceuticals. Phytosterols (PS), plant-derived natural sterol compounds, are preferred for oleogel preparation due to their self-assembly properties and health function. However, the relationship between the physical properties of PS-based oleogels and the chemical stability of loaded bioactive compounds is still unclear. RESULTS: The influence of lecithin (LC) and glycerol monostearate (GMS) on the physical properties of PS-based oleogels made of liquid coconut oil and the stability of curcumin as a model bioactive loaded in the oleogels was investigated. Results showed that the flow consistency index was much higher for GMS-containing oleogels than that for LC-containing oleogels. The optical microscopy and X-ray scattering analysis showed that the addition of GMS in the PS oleogels promoted the formation of a crystal mixture with different crystal polymorph structures, whereas LC addition promoted the formation of needle-like crystals of PS. Using curcumin as a model lipophilic nutraceutical, the GMS-enriched PS oleogels with high crystallinity and flow consistency index exhibited a good retention ratio and scavenging activity of the loaded curcumin when stored at room temperature. CONCLUSION: This study shows that enhancing the firmness of oleogels made from PS and liquid coconut oil is beneficial to the retention and chemical stability of a loaded bioactive (curcumin). The findings of the study will boost the development of PS-based oleogel formulations for lipophilic nutraceutical delivery. © 2022 Society of Chemical Industry.


Asunto(s)
Curcumina , Fitosteroles , Aceite de Coco , Fitosteroles/química , Tensoactivos
19.
Nanoscale ; 14(48): 17940-17954, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36349848

RESUMEN

Carbon nanodots (C-dots) have attracted much attention for their use in the fields of bioimaging, drug delivery, and sensing due to their excellent fluorescent and photoluminescent properties, photostability, biocompatibility, and amenability to surface modification. Herein, we report a nanocomposite formulation of C-dots (<5 nm) encapsulated in lipid-based lyotropic liquid crystalline nanoparticles (∼250 nm) via either passive diffusion or electrostatic mechanisms. The physicochemical properties of the nanocomposite formulation including particle size, surface charge, internal cubic nanostructures, and pH-dependent fluorescent properties were characterised. Upon loading of C-dots into lipid nanoparticles, the highly ordered inverse bicontinuous cubic mesophase existed in the internal phase of the nanoparticles, demonstrated by synchrotron small angle X-ray scattering, molecular dynamic simulation and cryogenic transmission electron microscopy. The pH-dependent fluorescent property of the C-dots was modified via electrostatic interaction between the C-dots and cationic lipid nanoparticles, which further enhanced the brightness of C-dots through self-quenching prevention. The cytotoxicity and cellular uptake efficiency of the developed nanocomposites were also examined in an epithelial gastric adenocarcinoma cell line (AGS) and a macrophage cell line (stimulated THP-1). Compared to free C-dots, the uptake and cell imaging potential of the C-dot nanocomposites was significantly improved, by several orders of magnitude as demonstrated by cytoplasmic fluorescent intensities using confocal microscopy. Loading C-dots into mesoporous lipid nanocarriers presents a new way of modifying C-dot physicochemical and fluorescent properties, alternative to direct chemical surface modification, and advances the bioimaging potential of C-dots by enhancing cellular uptake efficiency and converging C-dot light emission.


Asunto(s)
Carbono , Nanocompuestos , Carbono/química , Sistemas de Liberación de Medicamentos/métodos , Tamaño de la Partícula , Lípidos
20.
Pharmaceutics ; 14(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297610

RESUMEN

pH-responsive nanoparticles enable the selective delivery of a chemotherapeutic agent to tumours while reducing adverse effects. Herein we synthesised four novel aminolipids and developed pH-responsive nanostructured lipid nanoparticles (LNP), which exhibited a slow-releasing hexagonal structure (H2) at physiological pH and quick release bicontinuous cubic phase (Q2) at the acidic tumour pH. The nanoparticles were used to encapsulate and control the release of the chemotherapeutic agent SN-38. High-throughput formulation techniques were employed to fabricate LNP by mixing various amounts of aminolipid with monoolein (MO). The effect of aminolipids on MO self-assembled structures was studied using small-angle X-ray scattering (SAXS) at various pH values. Out of the four studied aminolipid-MO LNP systems, the nanoparticles containing N-(Pyridin-4-ylmethyl) oleamide (OAPy-4) or N-(2(piperidin-1yl)ethyl) oleamide (OAPi-1) exhibited a pH-induced H2 to Q2 phase transition in a tumour-relevant pH range (pH 5.5-7.0). SN-38 is 1000 times more efficacious than the commercially available prodrug irinotecan. However, low solubility in water and instability at physiological pH makes it unsuitable for clinical use. SN-38 was loaded into LNP containing MO and aminolipid OAPy-4. The drug loading and entrapment efficiency were determined, and the results indicated that the aqueous solubility of SN-38 loaded in LNP dispersions was ~100 times higher compared to the solubility of the pure drug in aqueous solution. Furthermore, we demonstrated that the in vitro SN-38 release rate from LNPs was faster at lower pH (pH 5) than at neutral pH. Therefore, pH-responsive LNPs developed in this study can potentially be employed in delivering and controlling the release of the potent drug SN-38 to tumour sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...